
NanoPi K2
wiki.friendlyarm.com/wiki/index.php/NanoPi_K2

Introduction
FriendlyElec's NanoPi K2 uses
Amlogic's 64-bit quad-core A53
S905 SoC. This SoC has an
internal Mali450 GPU. S905's
dynamic frequency scales up to
2G Hz.In FriendlyElec's tests it
can scale up to 2G. Its most
significant feature is that it
supports various video formats
and has strong video decoding
capability
The NanoPi K2 has 2GB DDR3
RAM, onboard WiFi & Bluetooth,
1000M Ethernet, USB, HDMI, IR
and more. It has a socket for
adding an external eMMC card. It
boots an OS from a TF card. It
has the same form factor, GPIO
interface and port layout as the
RPi 3. An Android image is ready
for K2. Later on a Ubuntu image
will be ready.
A special feature of the NanoPi
K2 is that it supports DVFS and
can play high-definition video
steams stably and smoothly. It is a
good platform for applications
such as advertisement machines,
TV boxes, home entertainment
appliances, multi-media devices
and etc.

Hardware Spec
SoC: Amlogic S905, Quad-core ARM Cortex-A53@1.5GHz, DVFS
GPU: Penta-core ARM Mali™-450
RAM: 2GB DDR3
Network Connectivity: 10/100/1000M (RTL8211F)

1/16

http://wiki.friendlyarm.com/wiki/index.php/NanoPi_K2
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_K2-1.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_K2-2.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi_K2-3.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi-K2-IF-001.png
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi-K2-1701-Dim.png
http://wiki.friendlyarm.com/wiki/index.php/File:SanDisk_MicroSD.png
http://wiki.friendlyarm.com/wiki/index.php/File:SanDisk_MicroSD-01.png
http://wiki.friendlyarm.com/wiki/index.php/File:SanDisk_MicroSD-02.png
http://wiki.friendlyarm.com/wiki/index.php/File:EMMC_module_1.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:EMMC_module_4.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:NanoPi-K2-4.jpg
http://wiki.friendlyarm.com/wiki/index.php/File:Kodi-Homepage.png

Wireless：802.11 b/g/n
Bluetooth：4.0 dual mode
Antenna: One onboard porcelain antenna shared by both WiFi and Bluetooth. One
individual IPX interface.
IR: Onboard IR receiver
Audio: Via HDMI/Bluetooth
eMMC interface: eMMC socket
I2S: 7-Pin, 2.54mm pitch pin-header
SD: 1 x MicroSD slot
USB Host: 4 x USB 2.0 Host, standard type A
Micro USB: 1 x USB 2.0, OTG, power input and data transmission
HDMI: HDMI 2.0, Type-A. It supports 4K video
GPIO: 40-Pin, 2.54mm pitch pin-header including I2C, ADC, GPIO, UART, PWM,
SPDIF and CVBS
Serial debug port: 4-Pin, 2.54mm pitch single-row pin-header
User Key: 1 x power key
LED: 1 x power LED and 1 x status LED
Power Interface: DC jack, MicroUSB
Power Supply: DC 5V/2A
PCB dimension: 56 x 85mm，6-layer, ENIG

Software Features

UbuntuCore

it supports output to an HDMI monitor
it supports WiFi
it supports Ethernet
it supports Bluetooth
built-in Qt-Embedded

Android

Kodi integrated

Diagram, Layout and Dimension

Layout

2/16

NanoPi-K2 Layout

GPIO Pin Description

Pin# Name Pin# Name

1 SYS_3.3V 2 VDD_5V

3 GPIODV_24/I2C_SDA_A 4 VDD_5V

5 GPIODV_25/I2C_SCK_A 6 GND

7 GPIOY_0 8 GPIOY_13/UART_TX_C

9 DGND 10 GPIOY_13/UART_RX_C

11 GPIOY_1 12 GPIOY_16/PWM_A

13 GPIOY_2 14 GND

15 GPIOY_3 16 GPIOY_15/PWM_F

17 SYS_3.3V 18 GPIOY_4

19 GPIOY_5 20 GND

3/16

21 GPIOY_7 22 GPIOY_6

23 GPIOY_9 24 GPIOY_8

25 DGND 26 GPIOY_10

27 GPIODV_26/I2C_SDA_B 28 GPIODV_27/I2C_SCK_B

29 GPIOY_11/SPDIF_IN 30 GND

31 GPIOAO_5 32 GPIOY_12/SPDIF_OUT

33 GPIOH_3 34 GND

35 GPIOCLK_1 36 CVBS

37 AIN1 38 1.8V Vref Out

39 GND 40 AIN0

eMMC Interface Pin Description

Pin# Name Pin# Name

1 eMMC_D0 2 eMMC_D1

3 eMMC_D2 4 eMMC_D3

5 eMMC_D4 6 eMMC_D5

7 eMMC_D6 8 eMMC_D7

9 eMMC_DS 10 GND

11 eMMC_CMD 12 eMMC_CLK

13 NC 14 GND

15 NC 16 1.8V OUT

17 eMMC_RST 18 3.3V OUT

19 GPIOY_5 20 GND

Debug Port（（UART0））

Pin# Name

1 GND

2 VDD_5V

3 UART_TX_AO_A

4 UART_RX_AO_A

7Pin I2S Interface Pin Description

Pin# Name

1 GND

4/16

2 SYS_3.3V

3 I2S_SCLK

4 I2S_LRCLK

5 I2S_DATA_OUT

6 I2S_DATA_IN

7 I2S_MCLK

Notes
1. SYS_3.3V: 3.3V power output
2. VDD_5V: 5V power output5V. The input range is 4.7V ~ 5.6V
3. All pins are 3.3V
4. For more details refer to the document:NanoPi-K2-1701-Schematic.pdf

Board Dimension

For more details refer to the document:NanoPi-K2-1701-dxf.zip

Get Started

Essentials You Need

Before starting to use your NanoPi K2 get the following items ready

NanoPi K2
MicroSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
A DC 5V/2A power is a must
HDMI monitor

5/16

http://wiki.friendlyarm.com/wiki/images/d/d1/NanoPi-K2-1701-Schematic.pdf
http://wiki.friendlyarm.com/wiki/images/2/26/NanoPi-K2-1701-dxf.zip

USB keyboard and USB mouse
A host computer running Ubuntu 16.04 64 bit system

TF Cards We Tested

To make your NanoPi K2 boot and run fast we highly recommend you use a Class10
8GB SDHC TF card or a better one. The following cards are what we used in all our test
cases presented here:

SanDisk TF 8G Class10 Micro/SD TF card:

SanDisk TF128G MicroSDXC TF 128G Class10 48MB/S:

川宇 8G C10 High Speed class10 micro SD card:

Make an Installation TF Card/eMMC Module

Boot OS from TF Card/eMMC Module

Get the following files from download link:

Download needed image files and utilities

Image File:

nanopi-k2_android_5.1.1-YYYYMMDD.img.zip Android5.1 Image File for flashing a TF card

nanopi-k2_ubuntu_core_xenial-
YYYYMMDD.img.zip

Ubuntu-Core with Qt-Embedded Image File for flashing a
TF card

nanopi-k2_android_5.1.1-emmc-
YYYYMMDD.img.zip

Android5.1 Image File for flashing an eMMC module

nanopi-k2_ubuntu_core_xenial-emmc-
YYYYMMDD.img.zip

Ubuntu-Core with Qt-Embedded Image File for flashing
an eMMC module

Flash Utility:

6/16

https://www.mediafire.com/folder/8xn2iirciznqh/NanoPi-K2

win32diskimager.rar Windows utility. Under Linux users can use "dd"

Flash Image to TF Card
Extract an image file and win32diskimager.rar. Insert a TF card(at least 8G) into a
Windows PC and run the win32diskimager utility as administrator. On the utility's
main window select your TF card's drive, the wanted image file and click on "write"
to start flashing the TF card.
Insert this card into your NanoPi K2's BOOT slot and power on (with a 5V/2A
power source). If both the green LED and blue LED are solid on this indicates your
NanoPi K2 has successfully booted.

Flash Image to eMMC Module
Extract an image file and win32diskimager.rar on a Window PC. Connect an
eMMC module to a TF card to eMMC adapter, insert this TF card adapter to a TF
to USB adapter and insert this USB adapter to the Windows PC. Run the
win32diskimager utility as administrator. On the utility's main window select this TF
adapter's drive, the wanted image file and click on "write" to start flashing the
eMMC module.

7/16

After flashing is done take off the eMMC module of the TF card adapter. Insert the
eMMC module to the eMMC slot on a NanoPi K2 and power on (with a 5V/2A
power source) the board. If both the green LED and blue LED are solid on this
indicates your NanoPi K2 has successfully booted.

When a K2 board has both a TF card and an eMMC module inserted it will always
boot from the eMMC module. If you want to boot your K2 from a TF card just insert
a TF card only and leave the eMMC slot empty.

Make Installation Card under Linux Desktop

1) Insert your TF card/TF adapter with eMMC flash into a host computer running
Ubuntu and check your SD card's device name

dmesg | tail

Search the messages output by "dmesg" for similar words like "sdc: sdc1 sdc2". If you
can find them it means your SD card has been recognized as "/dev/sdc". Or you can
check that by commanding "cat /proc/partitions".

2) Downlaod Linux script

git clone https://github.com/friendlyarm/sd-fuse_amlogic.git

cd sd-fuse_amlogic

3) Make Android TF Card

su

./fusing.sh /dev/sdx android

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you
have to hit “Y” within 10 seconds otherwise you will miss the download

4) Make Android eMMC Module

8/16

http://wiki.friendlyarm.com/wiki/index.php/File:Emmc_k2.jpg

su

./fusing.sh /dev/sdx android emmc

(Note: you need to replace "/dev/sdx" with the device name in your system)
When you run the script for the first time it will prompt you to download an image you
have to hit “Y” within 10 seconds otherwise you will miss the download

Extend NanoPi K2's TF Card/eMMC Module Section

If your board runs Ubuntu you can skip this section since Ubuntu will automatically
extend your TF card's section. When Android is loaded you need to run the
following commands on your host PC to extend your TF card's section:

sudo umount /dev/sdx?

sudo parted /dev/sdx unit % resizepart 4 100 unit MB print

sudo resize2fs -f /dev/sdx4

(Note: you need to replace "/dev/sdx" with the device name in your system)

HDMI Resolution

If your NanoPi K2 is connected to an HDMI monitor and it runs Android it will
automatically set the resolution to an appropriate HDMI mode by checking the "EDID".

Run Android

Insert an SD card with Android image into your NanoPi K2, connect the board to
an HDMI monitor, power on the board K2 will boot from the SD card. If you can see
the PWR LED on and the blue LED are solid on it means your board is working
and you will see Android being loaded on the HDMI monitor.

It is recommended to turn off its
power by pressing the PWR key
otherwise the system data in the
TF card will be damaged.

Play Multi-Media Stream with Kodi

Kodi is pre-installed on Android. It supports hard-decoding. Here is how Kodi looks like:

9/16

Insert a USB storage card with a video
file to K2's USB port and on Kodi's main
window select "Videos -> udisk0" to load
and play the video file in the storage
card:

Run Ubuntu core

Introduction to Ubuntu core

Ubuntu Core with Qt-Embedded is a light Linux system without X-windows. It uses the
Qt-Embedded's GUI and is popular in industrial and enterprise applications. Besides the
regular Ubuntu core's features our Ubuntu-Core has the following additional features:

it supports output to an HDMI monitor
it supports WiFi
it supports Ethernet
it supports Bluetooth
built-in Qt-Embedded

Thanks to A53 SoC's powerful performance, 2G RAM and Gbps Ethernet the NanoPi K2
with Ubuntu is well suited for IoT applications and light server applications such as NAS.

Applications under Ubuntu core

10/16

http://wiki.friendlyarm.com/wiki/index.php/File:Kodi-Playing.png

After you insert an SD card pre-installed with Ubuntu to a NanoPi K2 and power up the
board you will observe the following GUI:

To enable Qt-Embedded GUI you can run the following command:

$ sudo /opt/QtE-Demo/run.sh

Here is a what you expect to observe. This is an open source Qt Demo application:

For more details about Ubuntu Core refer to: Ubuntu Core with Qt-Embedded

Make Your Own OS Image

Install Cross Compiler

Install ARMv7 Cross Compiler

Download the compiler package:

11/16

http://wiki.friendlyarm.com/wiki/index.php/File:K2-ubuntu.png
http://wiki.friendlyarm.com/wiki/index.php/File:K2-QtE.png
http://wiki.friendlyarm.com/wiki/index.php/Ubuntu_Core_with_Qt-Embedded/zh

git clone https://github.com/friendlyarm/prebuilts.git

sudo mkdir -p /opt/FriendlyARM/toolchain

sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C

/opt/FriendlyARM/toolchain/

Then add the compiler's directory to "PATH" by appending the following lines in
"~/.bashrc".:

export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:$PATH

export GCC_COLORS=auto

Execute "~/.bashrc" to make the changes take effect. Note that there is a space after the
first ".":

. ~/.bashrc

This compiler is a 64-bit one therefore it cannot be run on a 32-bit Linux machine. After
the compiler is installed you can verify it by running the following commands:

arm-linux-gcc -v

Using built-in specs.

COLLECT_GCC=arm-linux-gcc

COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-

linux-gnueabihf/4.9.3/lto-wrapper

Target: arm-cortexa9-linux-gnueabihf

Configured with: /work/toolchain/build/src/gcc-4.9.3/configure --build=x86_64-

build_pc-linux-gnu

--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --

prefix=/opt/FriendlyARM/toolchain/4.9.3

--with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-

root --enable-languages=c,c++

--with-arch=armv7-a --with-tune=cortex-a9 --with-fpu=vfpv3 --with-float=hard

...

Thread model: posix

gcc version 4.9.3 (ctng-1.21.0-229g-FA)

Install AArch64 Cross Compiler

The AArch64 cross compiler is needed to compile U-Boot and Linux. We used linaro
toolchain:

wget http://releases.linaro.org/components/toolchain/binaries/4.9-2017.01/aarch64-

linux-gnu/gcc-linaro-4.9.4-2017.01-x86_64_aarch64-linux-gnu.tar.xz

tar xf gcc-linaro-4.9.4-2017.01-x86_64_aarch64-linux-gnu.tar.xz

export PATH=~/gcc-linaro-4.9.4-2017.01-x86_64_aarch64-linux-gnu/bin:$PATH

Add the compiler's directory to "PATH".

Compile U-Boot

Download the U-Boot source code and compile it. Note that the github's branch is
nanopi-k2-v2015.01:

12/16

git clone https://github.com/friendlyarm/u-boot.git uboot

cd uboot

git checkout nanopi-k2-v2015.01

make nanopi-k2_defconfig

make

After your compilation succeeds a u-boot.bin will be generated. If you want to test it flash
it to your installation TF card via fastboot. Here is how you can do it:

sudo ./fusing.sh /dev/sdc

You can type the following command to update both a TF card and an eMMC Flash

sudo ./fusing.sh /dev/sdc emmc

Or you can do it with fastboot:
1) On your host PC run "sudo apt-get install android-tools-fastboot" to install the fastboot
utility;
2) Connect your NanoPi K2 to your host PC via a serial cable (e.g. PSU-ONECOME).
Press the enter key within two seconds right after you power on your NanoPi K2 and you
will enter uboot's command line mode;
3) After type in "fastboot" and press "enter" you will enter the fastboot mode;
4) Connect your NanoPi K2 to this host PC via a microUSB cable and type in the
following command to flash u-boot.bin:

fastboot flash bootloader fip/gxb/u-boot.bin

We haven't found a way to update the uboot on an eMMC flash with fastboot.

Compile Linux kernel

Compile Kernel

Download Kernel Source Code

git clone https://github.com/friendlyarm/linux.git

cd linux

git checkout nanopi-k2-3.14.y

The NanoPi K2's kernel source code lies in the "nanopi-k2-3.14.y" branch.

Compile Android Kernel

touch .scmversion

make ARCH=arm64 nanopi-k2_android_defconfig

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- Image nanopi-k2.dtb

After your compilation succeeds an arch/arm64/boot/dts/amlogic/nanopi-k2.dtb file and
an arch/arm64/boot/Image will be generated. You can use them to replace the existing
files under your SD card's boot section.

Compile Ubuntu Kernel

13/16

touch .scmversion

make ARCH=arm64 nanopi-k2_ubuntu_defconfig

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- Image nanopi-k2.dtb

User Your Generated Kernel

Update the kernel file in SD card

If you use an SD card to boot Android you can copy your generated uImage file and
nanopi-k2.dtb file to your SD card's boot section(e.g. section 1 /dev/sdX1).

Update kernel with adb

You can update your kernel with adb and here is how you can do it:

adb shell mount -t ext4 /dev/block/mmcblk0p1 /storage/sdcard1/

adb push arch/arm64/boot/Image /storage/sdcard1/

adb push arch/arm64/boot/dts/amlogic/nanopi-k2.dtb /storage/sdcard1/

adb reboot

Update Image and nanopi-k2.dtb

If you want to generate a new Android's boot.img you need to use your newly generated
image and nanopi-k2.dtb to replace the existing files under "device/friendly-arm/nanopi-
k2-kernel" and recompile Android.

Compile Android

Install Cross Compiler

Install a 64-bit Ubuntu 14.04 on your host PC

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-

networkx zip

sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

For more details refer to https://source.android.com/source/initializing.html

Download Android5.1 Source Code

You need to use repo to get the Android source code. Refer to
https://source.android.com/source/downloading.html .

mkdir android && cd android

repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi-k2-

lollipop

repo sync

"android" is the working directory.

Compile System

14/16

https://source.android.com/source/initializing.html
https://source.android.com/source/downloading.html

source build/envsetup.sh

lunch nanopi_k2-userdebug

make -j8

After compilation succeeds an image file will be generated under
"out/target/product/nanopi-k2"

filename partition Description

u-boot.bin bootloader -

boot.img boot -

cache.img cache -

userdata.img userdata -

system.img system -

partmap.txt - partition
file

Flash Image to SD Card

If you want to boot your board from an SD card you need to copy your generated image
file to the "sd-fuse_amlogic/android/" directory and flash it to your SD card with our
script. For more details refer to # Make Installation Card under Linux Desktop.

Update Image with fastboot

Right after the NanoPi K2 is booted press any key to enter the uboot commandline mode
and type in "fastboot usb"
Connect your K2 to a host PC with a USB cable and type the following commands from
your PC's terminal:

cd out/target/product/nanopi-k2

sudo fastboot flash boot boot.img

sudo fastboot flash cache cache.img

sudo fastboot flash userdata userdata.img

sudo fastboot flash system system.img

sudo fastboot reboot

Update Log

April-14-2017

Released English version

June-4-2017

Added section 4.5: kodi support

July-21-2017

15/16

http://wiki.friendlyarm.com/wiki/index.php/NanoPi_K2#_Make_Installation_Card_under_Linux_Desktop

Added sections 3 and 5.5

Nov-17-2017

Added sections 5.3.1.2
Updated sections 5.3.1, 5.3.3, 6.2 and 6.3

16/16

	NanoPi K2
	Introduction
	Hardware Spec
	Software Features
	UbuntuCore
	Android

	Diagram, Layout and Dimension
	Layout
	Board Dimension

	Get Started
	Essentials You Need
	TF Cards We Tested
	Make an Installation TF Card/eMMC Module
	Boot OS from TF Card/eMMC Module
	Make Installation Card under Linux Desktop
	Extend NanoPi K2's TF Card/eMMC Module Section
	HDMI Resolution

	Run Android
	Play Multi-Media Stream with Kodi

	Run Ubuntu core
	Introduction to Ubuntu core
	Applications under Ubuntu core

	Make Your Own OS Image
	Install Cross Compiler
	Compile U-Boot
	Compile Linux kernel
	Compile Kernel
	User Your Generated Kernel

	Compile Android

	Update Log
	April-14-2017
	June-4-2017
	July-21-2017
	Nov-17-2017

